

德科物联 13.56MHz NFC 高频读写模块

DK25T-232-ANT

Datasheet

V1.3.2

文档修订历史:

版本	日期	原因	
V1.0.0	2019-5-4	创建文档	
V1.0.1	2019-5-30	修正默认寻卡流程、删除低功耗内容	
V1.3.0	2019-9-19	1、增加配置系统参数命令,可以配置模块低功耗	
		寻卡间隔、上电是否自动寻卡、是否开启低功耗	
		寻卡、寻卡参数等,并且可掉电保存。	
		2、修改打开/关闭自动寻卡后状态掉电保存功能。	
V1.3.1	2020-10-22	1、增加自动寻卡时返回数据格式的说明	
		2、修改打开/关闭自动寻卡时寻卡间隔说明	
V1.3.2	2020-12-5	1、修改文字描述	

免责声明:

本文档提供有关深圳市德科物联技术有限公司产品的信息。本文档并未以暗示、禁止反言或其他形式转让本公司或任何第三方的专利、商标、版权或所有权或其下的任何权利或许可。除德科物联在其产品的销售条款和条件中声明的责任之外,本公司概不承担任何其它责任,并且,德科物联对其产品的销售或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。若不按手册要求连接或操作产生的问题,本公司免责。德科物联可能随时对产品规格及产品描述作出修改,恕不另行通知。对于本公司产品可能包含某些设计缺陷或错误,一经发现将收入勘误表,并因此可能导致产品与已出版的规格有所差异。如客户索取,可提供最新的勘误表。

在订购产品之前,请您与本公司联系,以获取最新的规格说明。

目录

1	概述			
2	产品特性			1
3	硬件接	美口		2
	3.1	模垻	· 中尺寸与接口	2
4	通信协	沙议		4
	4.1	软件	片 流程	4
	4.2	通证	1传输字节格式	4
	4.3	数据	号帧格式	5
	4.4	命令	>码	5
	4.	4.1	通用指令	6
	4.	4.2	Mifare 卡操作指令	11
	4.	4.3	Ultralight 卡操作指令	15
	4.	4.4	ISO14443-A CPU 卡操作指令	17
	4.	4.5	身份证操作指令	18
	4.	4.6	ISO15693 卡片操作指令	19
5	模块反	え馈		22
6	常见故	文障 分	↑析	23
	6.1	打开	F串口失败	23
	6.2	与梼	草块无法通信	23
	6.3	读取	双不到卡片	23
7	技术支	7持		24

概述 1

DK25T-232-ANT 是基于 13.56MHz 的高频卡读写模块, 采用 UART 通讯接口, RS232 通信 电平,兼容性好,通用性强。用户通过 UART 向模块发送简单指令可实现对 NFC 卡片进行读 写操作,简单易用,用户可使用该模块高效快速开发 NFC 读写功能产品。

DK25T-232-ANT 支持 ISO14443A、ISO14443B、IOS15693、ISO18092、Felica 等协议的卡片 类型,支持 APDU 指令通道。

DK25T-232-ANT 模块采用天线-主控一体化设计, 免除天线引线环境干扰, 外部接线简单。

产品特性 2

【支持卡片】: mifare one (M1)、S50、S70、NTAG2xx 系列、复旦 F08、I-CODE-X 等类型 标签;同时,还可以支持识别二代身份证、城市一卡通、银行卡、护照、 港澳证。

【电压范围】: $5.0V (\pm 0.5V)$

【支持协议】: ISO15693、ISO14443-A、ISO14443-B、ISO18092、Felica

【工作电流】: 30mA~130mA

【工作温度】: -20~85℃

【通信接口】: UART 232 电平

【波特率】: 115200bps (默认)

【模块尺寸】: 天线分体模块: 35x54 mm

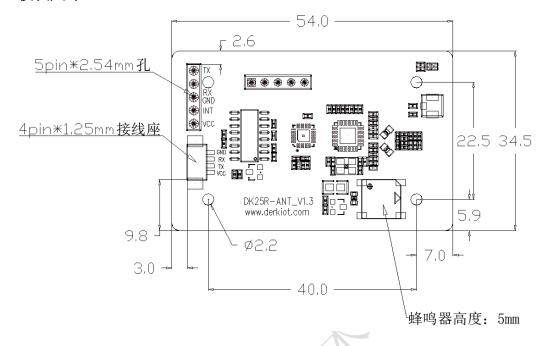
20mm~60mm (视标签与天线而定) 【读卡距离】:

内置硬件看门狗, 杜绝死机; 【看门狗】

硬件接口 3

3.1 模块尺寸与接口

模块实物图:



接口定义:

	德科 DK25T-232-ANT 模块 引脚 说明		
引脚号	功能	说明	
1	GND	电源地	
2	UART_RXD	模块串口接收	
3	UART_TXD	模块串口发送	
4 VCC 5V 电源			
注: 模块上有接口的丝印,在此不做详细描述			

模块尺寸:

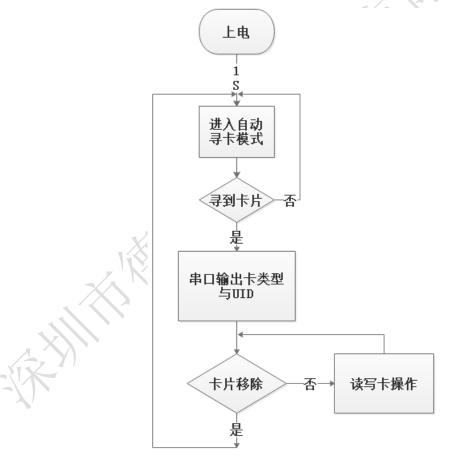
通信协议

4.1 软件流程

模块上电后进入自动寻卡模式,输出格式为(16进制):

如果配置了输出卡片类型则返回(默认):

0xAA+1字节长度 +0x01+1字节卡片类型 +n字节卡片 UID


如果配置了不输出卡片类型则返回:

0xAA+1字节长度 + 0x01+n 字节卡片 UID

当卡片拿开时,从串口输出卡片离开指令,输出格式为(16进制):

AA 01 EA

软件流程如下图所示:

4.2 通讯传输字节格式

1) 通讯标准: UART

2) 波 特 率: 115200 bps

3) 起始位: 1bit

4) 数据位: 8 bits 5) 停 止 位: 1bit

6) 校 验: 无

4.3 数据帧格式

帧头	长度	命令	【地址】	【数据】
0XAA	1 Byte	1 Byte	1 Byte	N Byte

注:【】表示指令中不一定会存在此部分,即地址和数据不一定在所有的指令中都存在。

帧头: 固定为 0xAA

长度: 长度 = 命令长度 (1Byte) + 【地址长度 (1Byte)】 + 【数据长度 (N Byte)】

命令:命令分为卡片操作命令、错误反馈命令、模块配置命令

地址: 卡片块地址 (M1 卡每个块数据 16 Byte, UL 卡每个块数据 4 Byte, ISO14443-

B卡每个块数据 4 Byte)

数据: 在对应命令处有详细说明。

4.4 命令码

指令类型	命令码	说明
1日〈大王	V-111	
	0x01	获取卡片 UID
Z	0x02	获取卡片类型
X	0x95	自动寻卡开关
通用指令	0xA0	修改模块波特率
	0xA1	配置系统参数指令
	0xA2	读取系统参数指令
	0xB0	获取模块固件版本号
	0x03	向模块写入需要验证的密钥(A 密钥)
Y)	0x04	Mifare 卡读块
	0x05	Mifare 卡写块
Mifare 卡操作指令	0x06	Mifare 卡增减值初始化
willate 下床下垣之	0x07	Mifare 卡增值
	0x08	Mifare 卡减值
	0x0B	向模块写入需要验证的密钥(B 密钥)
	0x0C	设置模块使用密钥的类型
Ultralight 丰榀佐比	0x09	Ultralight 卡读块
Ultralight 卡操作指 令	0x1C	Ultralight 卡读多个块
	0x1D	Ultralight 卡写多个块
<u>ISO14443-A CPU 卡</u>	0x15	ISO14443-A CPU 卡片激活指令

* 1 7 1 1 1 2	11	1411121 4		
操作指令	0x17	ISO14443-A CPU 卡 APDU 指令接口		
	0x18	卡片断电指令、关闭天线指令接口		
	0x14	身份证激活指令		
身份证卡片操作	0x16	身份证 APDU 指令接口		
	0x18	卡片断电指令、关闭天线指令接口		
	0x90	ISO15693 卡读单个块		
	0x91	ISO15693 读多个块		
ISO15693 卡片操作	0x92	ISO15693 写单个块		
	0x93	ISO15693 写多个块		
	0x94	ISO15693 锁住块		
	0xE0	卡类型错误反馈指令		
	0xE1	未寻到卡错误反馈指令		
	0xE2	密钥不匹配错误反馈指令		
	0xE3	读块失败错误指令		
增払 后應	0xE4	写块失败错误指令		
模块反馈	0xE5	M1 卡值初始化失败错误指令		
	0xE6	M1 卡增值失败错误指令		
	0xE7	M1 卡减值失败错误指令		
	0xFE	ACK 确认命令		
	0xFF	NACK 否认命令		

4.4.1 通用指令

a) 获取卡片 UID

命令码 0x01 上位机->模块指令格式:

帧头	长度	指令码
0xAA	0x01	0x01

模块->上位机指令格式:

未寻到卡时返回:

帧头	长度	指令码
0xAA	0x01	0xE1

寻到卡时返回:

帧头	长度	指令码	卡片 UID
0xAA	UID 长度 +1	0x01	4-8字节

卡片 UID 长度:

卡片类型	UID 长度
	Byte
ISO14443-A CPU 卡	4
ISO14443-B 协议卡	8
Mifare 卡(M1)	4
ISO15693 协议卡	8
Ultralight 卡(NFC 标签)	7
DF卡	7

例:

向模块发送: AA 01 01

返回: AA 05 01 16 AB E1 C5

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 青色表示数据

本指令中,数据为卡片的 UID,本指令适用于所有的卡类型,其中 M1 卡 4 Byte UID、UL 卡 7 Byte UID, ISO14443-B 卡 8 Byte UID。

b) 获取卡片类型 (M1 或者 UL)

命令码 0x02

上位机->模块指令格式:

帧头	长度	指令码
0xAA	0x01	0x02

模块->上位机指令格式:

未寻到卡时返回:

7 11 11 11 =1 17			
	帧头	长度	指令码
	0xAA	0x01	0xE1

寻到卡时返回:

帧头 长度		指令码	卡片类型	
0xAA	0x02	0x02	1 字节	

卡片类型:

0x00	未定义	
0x01	Mifare 卡	
0x02	Ultralight 卡(NFC 标签)	
0x03	ISO14443-B	
0x04	ISO14443-A CPU 卡	
0x05	ISO15693 协议卡	

例:

向模块发送: AA 01 02

返回: AA 02 02 01

注: <mark>红色表示帧头</mark>, 黄色表示指令长度, 绿色表示指令,青色表示数据

本指令中,数据为卡片的类型,01 表示 M1 卡,02 表示 UL 卡,03 表示 ISO14443-B,04 表示 ACPU 卡,05 表示 ISO15693 卡

c) 获取模块软件硬件版本号

命令码 0xB0

上位机->模块指令格式:

帧头	长度	指令码	
0xAA	0x01	0xB0	

模块->上位机指令格式:

操作成功时返回:

帧头	长度	指令码	版本号	
0xAA	0x02	0xB0	1字节	

例:

向模块发送: AA 01 B0

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 青色表示数据

本指令中,数据为版本信息

d) 打开/关闭自动寻卡指令

注意: 该寻卡指令掉电后会被保存

命令码 0x95

上位机->模块指令格式:

帧头	长度	指令码	打开/关闭自动寻卡	寻卡间隔	寻卡参数
0xAA	0x04	0x95	1 字节	1 字节	1 字节

说明:

打开/关闭自动寻卡: 0为关闭自动寻卡,非0为打开自动寻卡。

寻卡间隔: 非低功耗自动寻卡间隔,仅在 LP 为 0 时(低功耗寻卡关闭)有效。寻卡间隔转换关系公式为: 寻卡间隔 = SD*10 毫秒。默认值为 0x14,对应寻卡间隔为 200 毫秒。

寻卡参数:如下表所示

BIT	含义	
	0: 未定义	
D:+ 0 D:+ 1	1: 将 CPU 卡当成 M1 卡处理	
Bit 0 – Bit 1	2: 将 CPU 当成 CPU 卡处理	
	3: 未定义	
D:+ 2	0: 卡片离开不返还 AA 01 EA	
Bit 2	1: 卡片离开时返回 AA 01 EA	
D:+ 2	0: 不识别复制卡	
Bit 3	1: 识别复制卡	
Bit 4	0: 不返回卡片类型	

深圳市德科物联技术有限公司 DK25T-232-ANT 模块产品应用手册

1: 返回卡片类型
0: 不返回银行卡卡号
1: 返回银行卡卡号
0: 不返回身份证特殊序列号
1: 返回身份证特殊序列号
0: 使用 106kbit/速率读取 CPU 卡
1: 根据卡片支持的速率选择最高速率读取 CPU 卡

模块->上位机指令格式:

操作成功时返回:

帧头	长度	指令码	
0xAA	0x01	0xFE	

例:

向模块发送: AA 04 95 FF FF 02

返回: AA 01 FE

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 青色表示数据

e) 配置模块波特率指令

注: 该配置掉电会保存。

模块配置命令中有串口波特率配置命令,串口波特率配置命令在发送命令后,下次上电或复位后生效,模块默认波特率为115200。模块支持的波特率有4800、9600、14400、19200、28800、38400、57600、115200 共8中速率。其对应的编码(编码在命令中使用)如下表所示:

波特率	对应编码		
4800	1		
9600	2		
14400	3		
19200	4		
28800	5		
38400	6		
57600	7		
115200	8		

命令码 0xA0

上位机->模块指令格式:

帧头 长度		指令码	波特率编码	
0xAA	0x02	0xA0	1 字节	

模块->上位机指令格式:

操作成功时返回:

帧头	长度	指令码		
0xAA	0x01	0xFE		

例:配置串口波特率为19200

向模块发送: AA 02 A0 04 返回(ACK): AA 01 FE

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 青色表示数据

本指令中,数据为波特率对应的编码。

f) 配置系统参数指令

系统参数决定模块上电后的默认状态,配置后的参数将会保存到 EEPROM,掉电保存。

命令码 0xA1

上位机->模块指令格式:

帧头	长度	指令码	波特率	LPWSD	SD	SP	AUTO	LPW
0xAA	0x07	0xA1	1 字节	1 字节	1 字节	1字节	1 字节	1 字节

波特率:波特率编码请参考 <u>e)配置波特率指令</u>,默认值为 0x08 (对应 115200 波特率)

LPWSD: 预留,填0

SD: 非低功耗自动寻卡间隔,仅在 LP 为 0 时(低功耗寻卡关闭)有效。寻卡间隔 转换关系公式为: 寻卡间隔 = SD * 10 毫秒。默认值为 0x14,对应寻卡间隔为 200 毫秒。

SP: 寻卡参数。请参考 d) 打开/关闭自动寻卡中的寻卡参数。默认值为 0x76。

AUTO: 自动寻卡开关。非 0 为开启自动寻卡, 0 为关闭自动寻卡。默认值为 0xFF, 开启自动寻卡。

LPW: 预留,填0

模块->上位机指令格式:

操作成功时返回:

帧头	长度	指令码
0xAA	0x01	0xFE

g) 读取系统参数指令

命令码 0xA2

上位机->模块指令格式:

帧头	长度	指令码
0xAA	0x01	0xA2

模块->上位机指令格式:

操作成功时返回:

帧头	长度	指令码	波特率	LPWSD	SD	SP	AUTO	LPW
0xAA	0x07	0xA2	1 字节	1 字节	1字节	1 字节	1 字节	1 字节

4.4.2 Mifare 卡操作指令

a) 写入 M1卡 KEY A 密钥到模块

命令码 0x03

上位机->模块指令格式:

帧头	长度	指令码	秘钥
0xAA	0x07	0x03	6 字节

模块->上位机指令格式:

操作成功时返回:

帧头	长度	指令码
0xAA	0x01	0xFE

例:

向模块发送: AA 07 03 ff ff ff ff ff

返回 (ACK): AA 01 FE

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 青色表示数据

本指令中,数据为 M1 卡 KEY A 密钥,共 6 byte。另外本指令指示保存密钥到模块中,并不验证密钥。只有在读写 M1 卡的操作,并且设置了模块密钥类型为 TYPE A(使用 M1_SET_KEY_TYPE 指令设置)才会使用此密钥去验证,模块默认密钥为 ff ff ff ff ff ff

b) M1 卡读块指令

命令码 0x04

上位机->模块指令格式:

帧头	长度	指令码	块地址
0xAA	0x02	0x04	1 字节

模块->上位机指令格式:

未寻到卡时返回:

7 * 7 * 1 * 1 - 1 1 · 1					
帧头	长度	指令码			
0xAA	0x01	0xE1			

操作成功时返回:

帧头	长度	指令码	块地址	块数据
0xAA	0x12	0x04	1 字节	16 字节

例: M1 卡读块 1 指令

向模块发送: AA 02 04 01

返回: AA 12 04 01 3E 9C 00 00 C1 63 FF FF 3E 9C 00 00 01 FE 01 FE

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 灰色表示地址 青色表

示数据

本指令中,数据为 M1 卡一个块的数据,共 16 byte

c) M1 卡写块指令

命令码 0x05

上位机->模块指令格式:

帧头	长度	指令码	块地址	块数据
0xAA	0x12	0x05	1 字节	16 字节

模块->上位机指令格式:

未寻到卡时返回:

帧头	长度	指令码
0xAA	0x01	0xE1

操作成功时返回:

帧头	长度	指令码
0xAA	0x01	0xFE

例: M1 卡写块 4 指令

向模块发送: AA 12 05 04 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

返回 (ACK): AA 01 FE

注: <mark>红色表示帧头</mark>, 黄色表示指令长度, 绿色表示指令,灰色表示地址 青色表

示数据

本指令中,数据为 M1 卡一个块的数据,共 16 Byte

d) M1 卡电子钱包初始化指令

命令码 0x06

上位机->模块指令格式:

帧头	长度	指令码	块地址	值
0xAA	0x06	0x06	1 字节	4 字节

模块->上位机指令格式:

未寻到卡时返回:

帧头	长度	指令码
0xAA	0x01	0xE1

操作成功时返回:

帧头	长度	指令码
0xAA	0x01	0xFE

例: M1 卡使用块 4 作为电子钱包,并且初始值为 1 元

向模块发送: AA 06 06 04 01 00 00 00

返回(ACK): AA 01 FE

注:

<mark>色表示帧头</mark>, <mark>黄色表示指令长度, 绿色表示指令</mark>,灰色表示地址 <mark>青色表</mark>

示数据

本指令中,数据为 M1 卡电子钱包初始值,共 4 Byte,低 8 位在前

e) M1 卡电子钱包充值指令

命令码 0x07

上位机->模块指令格式:

帧头	长度	指令码	块地址	值
0xAA	0x06	0x07	1 字节	4 字节

模块->上位机指令格式:

未寻到卡时返回:

帧头	长度	指令码
0xAA	0x01	0xE1

操作成功时返回:

帧头	长度	指令码
0xAA	0x01	0xFE

例: M1 卡给块 4 的电子钱包充值 2 元

向模块发送: AA 06 07 04 02 00 00 00

返回(ACK): AA 01 FE

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 灰色表示地址 青色表

示数据

本指令中,数据为 M1 卡电子钱包要充值的数额,共 4 Byte,低 8 位在前

f) M1卡电子钱包扣款指令

命令码 0x08

上位机->模块指令格式:

帧头	长度	指令码	块地址	值
0xAA	0x06	0x08	1 字节	4 字节

模块->上位机指令格式:

未寻到卡时返回:

帧头	长度	指令码
0xAA	0x01	0xE1

操作成功时返回:

帧头	长度	指令码
0xAA	0x01	0xFE

例: M1 卡给块 4 的电子钱包扣款 2 元

向模块发送: AA 06 08 04 02 00 00 00

返回(ACK): AA 01 FE

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 灰色表示地址。

示数据

本指令中,数据为 M1 卡电子钱包要扣的数额,共 4 Byte,低 8 位在前

g) 写入M1卡KEYB密钥到模块

命令码 0x0B

上位机->模块指令格式:

帧头	长度	指令码	秘钥
0xAA	0x0B	0x03	6 字节

模块->上位机指令格式:

操作成功时返回:

帧头	长度	指令码
0xAA	0x01	0xFE

例:

向模块发送: AA 07 0B ff ff ff ff ff

返回 (ACK): AA 01 FE

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 青色表示数据

本指令中,数据为 M1 卡 KEY B 密钥,共 6 byte。另外本指令指示保存密钥到 模块中,并不验证密钥。只有在读写 M1 卡的操作,并且设置了模块密钥类型为 TYPE B (使用 M1_SET_KEY_TYPE 指令设置) 才会使用此密钥去验证,模块默认密钥为 ff ff ff ff ff

h) 设置模块使用密钥的类型

命令码 0x0C

上位机->模块指令格式:

帧头	长度	指令码	秘钥类型
0xAA	0x02	0x0C	1 字节

模块->上位机指令格式:

操作成功时返回:

帧头	长度	指令码
0xAA	0x01	0xFE

例:

向模块发送: AA 02 0C 0A 返回: AA 01 <mark>FE</mark>

色表示帧头, 黄色表示指令长度, 绿色表示指令, 青色表示数据 注:

本指令中,数据为要设置的密钥类型,0x0A表示KEYA,0x0B表示KEYB,默 认为 KEY A

Ultralight 卡操作指令 4.4.3

a) UL 卡读块指令

命令码 0x09

上位机->模块指令格式:

帧头	长度	指令码	块地址
0xAA	0x02	0x09	1 字节

模块->上位机指令格式:

未寻到卡时返回:

帧头	长度	指令码
0xAA	0x01	0xE1

读卡成功时返回:

帧头	长度	指令码	块地址	块数据
0xAA	0x06	0x90	1 字节	4 字节

例: UL卡读块1指令

向模块发送: AA 02 09 01

AA 06 <mark>09</mark> 01 3E 9C 00 00 返回:

<mark>色表示帧头</mark>, <mark>黄色表示指令长度</mark>, <mark>绿色表示指令</mark>,灰色表示地址 <mark>青色表</mark> 注:

本指令中,数据为 UL 卡一个块的数据, 共 4 Byte

b) UL卡写块指令

命令码 0x0A

上位机->模块指令格式:

帧头	长度	指令码	块地址	块数据
0xAA	0x06	0x0A	1 字节	4 字节

模块->上位机指令格式:

未寻到卡时返回:

帧头	长度	指令码
0xAA	0x01	0xE1

写卡成功时返回:

帧头	长度	指令码
0xAA	0x01	0xFE

例: UL卡写块 4 指令

向模块发送: AA 06 0A 04 00 01 02 03

返回 (ACK): AA 01 FE

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 灰色表示地址 青色表

示数据

本指令中,数据为 UL 卡一个块的数据, 共 4 Byte

b) UL 卡读多个块指令

命令码 0x1C

上位机->模块指令格式:

帧头	长度	指令码	起始块	结束块
0xAA	0x03	0x1C	1 字节	1字节(必须大于起始块)

模块->上位机指令格式:

未寻到卡时返回:

帧头	长度	指令码
0xAA	0x01	0xE1

读卡成功时返回:

帧头	长度	指令码	地址	数据
0xAA	块数量 x4+2 字节	0x1C	1 字节	块数量 x4 字节

例: UL 卡读取 0 到 0x30 块 (读出数据量为: (0x30 - 0) x 4 = 192 字节)

向模块发送: AA 03 1C 00 30

返回 (ACK): AA C6 1C 00 192 字节数据

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 灰色表示地址 青色表

示数据

b) UL 卡写多个块指令

命令码 0x1D

上位机->模块指令格式:

帧头	长度	指令码	起始块	要写的数据
0xAA	n	0x1D	1 字节	最大 240 字节

模块->上位机指令格式:

未寻到卡时返回:

帧头	长度	指令码
0xAA	0x01	0xE1

写卡成功时返回:

帧头	长度	指令码
0xAA	0x01	0xFE

例: UL卡写两个块

向模块发送: AA OA 1D 04 30 30 30 30 30 30 30 30 30

返回 (ACK): AA 01 FE

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 灰色表示地址

示数据

4.4.4 ISO14443-A CPU 卡操作指令

a) ISO14443-A 卡激活指令

命令码 0x15

上位机->模块指令格式:

帧头	长度	指令码
0xAA	0x01	0x15

模块->上位机指令格式:

操作成功时返回:

帧头	长度	指令码
0xAA	0x01	0xFE

例:

向模块发送: AA 01 15

AA 01 <mark>FE</mark> 返回:

注: 工色表示帧头, 黄色表示指令长度, 绿色表示指令

卡片激活后,如果移开卡片(卡片断电),会返回 AA 01 EA。

b) ISO14443-A PDU 指令接口

命令码 0x17

上位机->模块指令格式:

帧头	长度	指令码	APDU 指令
0xAA	n+1 字节	0x17	n 字节

模块->上位机指令格式:

操作成功时返回:

帧头	长度	指令码	APDU 指令
0xAA	n+1 字节	0x17	n 字节

例:

向模块发送: AA 06 17 00 84 00 00 08

AA 0B 17 3E 9C 00 08 1D 82 11 C1 90 00

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 青色表示数据

本指令中,数据为接收到的 PDU 指令及指令的返回数据。

c) 卡片断电指令

命令码 0x18

上位机->模块指令格式:

帧头	长度	指令码
0xAA	0x01	0x18

模块->上位机指令格式:

操作成功时返回:

帧头	长度	指令码
0xAA	0x01	0xEA

例:

向模块发送: AA 01 18

AA <mark>01 EA</mark> 返回:

<mark>帧头</mark>, 黄色表示指令长度, 注: 绿色表示指令

身份证操作指令 4.4.5

a)ISO14443-B 卡激活指令

命令码 0x14

上位机->模块指令格式:

THE DESCRIPTION OF THE PERSON			
帧头	长度	指令码	
0xAA	0x01	0x14	

模块->上位机指令格式:

操作成功时返回:

帧头	长度	指令码
0xAA	0x01	0xFE

例:

向模块发送: AA 01 14

返回: AA <mark>01 FE</mark>

注: 表示帧头<mark>, 黄色表示指令长度</mark>, 绿色表示指令

卡片激活后,如果移开卡片(卡片断电),会反回 AA 01 EA

b) ISO14443-B PDU 指令接口

命令码 0x16

上位机->模块指令格式:

帧头	长度	指令码	APDU 指令
0xAA	n+1 字节	0x16	n 字节

模块->上位机指令格式:

操作成功时返回:

帧头	长度	指令码	APDU 指令
0xAA	n+1 字节	0x16	n 字节

例:

向模块发送: AA 06 16 00 84 00 00 08

返回: AA OB 16 3E 9C 00 08 1D 82 11 C1 90 00

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 青色表示数据

本指令中,数据为接收到的 PDU 指令及指令的返回数据。

c) 卡片断电指令

命令码 0x18

上位机->模块指令格式:

帧头	长度	指令码
0xAA	0x01	0x18

模块->上位机指令格式:

操作成功时返回:

帧头	长度	指令码
0xAA	0x01	0xEA

例:

向模块发送: AA 01 18 返回: AA 01 EA

注: 红色表示帧头,

黄色表示指令长度, 绿色表示指令

4.4.6 ISO15693 卡片操作指令

a) 读取 ISO15693 卡片单个块数据

命令码 0x90

上位机->模块指令格式:

帧头 长度 指令码 块地址

深圳市德科物联技术有限公司 DK25T-232-ANT 模块产品应用手册

0x02 0x90 1字节 0xAA

模块->上位机指令格式:

未寻到卡时返回:

帧头	长度	指令码
0xAA	0x01	0xE1

读卡成功时返回:

帧头	长度	指令码	块地址	块数据
0xAA	0x06	0x90	1 字节	4 字节

例:

向模块发送: AA 02 90 00

返回: AA 06 90 00 3E 9C 00 00

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 灰色表示地址,

示数据

数据表示读到的数据,一个块4字节

b) 读取 ISO15693 卡片多个块数据

命令码 0x91

上位机->模块指令格式:

帧头	长度	指令码	块起始地址	块数量
0xAA	0x03	0x91	1字节	1 字节

模块->上位机指令格式:

未寻到卡时返回:

帧头	长度	指令码
0xAA	0x01	0xE1

读卡成功时返回:

帧头	长度	指令码	块地址	块数据
0xAA	块数据长度+2 字节	0x91	1 字节	块数量 x 4 字节

例:

向模块发送: AA 03 91 00 04

返回: AA OA <mark>91 00</mark> 3E 9C 00 3E 9C 00 00 3E 9C 00 00 3E 9C 00 00 00

注: 红 <mark>帧头</mark>, 黄色表示指令长度, <mark>绿色表示指令</mark>,灰色表示地址,<mark>青色表</mark>

示数据

其中向模块发送数据的数据表示要读取的块数量(每个块4个字节)

c) 写一个块数据到 ISO15693 卡片中

命令码 0x92

上位机->模块指令格式:

帧头 长度 | 指令码 | 块地址 | 块数据

深圳市德科物联技术有限公司 DK25T-232-ANT 模块产品应用手册

0xAA 0x06 0x92 1字节 4字节

模块->上位机指令格式:

未寻到卡时返回:

帧头 长度 指令码 0xAA 0x01 0xE1

写卡成功时返回:

 帧头
 长度
 指令码

 0xAA
 0x01
 0xFE

例:

向模块发送: AA 06 92 00 01020304

返回(ACK):AA 01 FE

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 灰色表示地址, 青色表

示数据

数据表示要写入卡片的数据,一个块4个字节

d) ISO15693 写多个块

命令码 0x93

上位机->模块指令格式:

帧头	长度	指令码	起始地址	块数量	要写的块数据
0xAA	n+3	0x93	1字节	1 字节	块数量 x4 字节

模块->上位机指令格式:

未寻到卡时返回:

帧头	长度	指令码
0xAA	0x01	0xE1

写卡成功时返回:

事件の	レ応	+14 & 777	
帧头	长度	指令码	
0xAA	0x01	0xFE	

例:

向模块发送: AA 06 92 00 01020304

返回 (ACK): AA 01 FE

注: 红色表示帧头, 黄色表示指令长度, 绿色表示指令, 灰色表示地址, 青色表

示数据

地址后面的 04 表示要写入 4 个块的数据,后面的数据必须是 4x4=16 字节

e) 锁住 ISO15693 的一个块(变成只读,且不能修改)

命令码 0x94

上位机->模块指令格式:

帧头	长度	指令码	块地址
0xAA	0x02	0x94	1 字节

模块->上位机指令格式:

未寻到卡时返回:

帧头	长度	指令码
0xAA	0x01	0xE1

操作成功时返回:

帧头	长度	指令码
0xAA	0x01	0xFE

例:

向模块发送: AA 02 94 00 返回 (ACK): AA 01 FE

注: <mark>红色表示帧头</mark>, 黄色表示指令长度, <mark>绿色表示指令</mark>, 灰色表示地址 此条指令将块 0 锁住, 变成只读, 不能写入数据, 一旦锁住将永远不能修改!

5 模块反馈

错误反馈指令用于在操作卡片时将遇到的错误类型反馈给上位机,使用者可参考错误代码,快速定位错误源。

[一门, 大坯上位			
错误标记	错误类型	反馈指 令	详细说明
EER_TAG_TYPE	卡类型错误	AA 01 E0	发送卡片操作指令与当前检测到的卡片类 型不一致时返回
EER_NO_FINE_TAG	未寻到卡错 误	AA 01 E1	发送卡片操作指令没有寻到卡时返回
EER_KEY_NO_AUTH	M1 卡密钥 不匹配错误	AA 01 E2	M1_READ_BLOCK、M1_WRITE_BLOCK、 M1_VALUE_INIT、M1_VALUE_ADD、 M1_VALUE_SUB 时,验证密钥失败。此时 需使用 M1_SAVE_KEY 指令先把正确的密 码保存到模块,再使用上述指令。
EER_READ_BLOCK	读块错误	AA 01 E3	使用 M1_READ_BLOCK、UL_READ_BLOCK 时读块不成功时,返回该指令。
EER_WRITE_BLOCK	写块错误	AA 01 E4	使用 M1_WRITE_BLOCK、 UL_WRITE_BLOCK 写块不成功。
EER_VALUE_INIT	M1 卡电子 钱包充值错 误	AA 01 E5	M1_VALUE_INIT 操作卡片失败时返回
EER_VALUE_ADD	M1 卡电子	AA 01 E6	使用 M1_VALUE_ADD 操作卡片失败时返回

	钱包充值		
EER_VALUE_SUB	M1 卡电子 钱包扣款错 误	AA 01 E7	使用 M1_VALUE_SUB 操作卡片电子钱包扣 款失败时返回

6 常见故障分析

6.1 打开串口失败

如果使用演示软件连接模块时,提示"拒绝访问",原因通常为该串口已被其它软件(如串口助手、门禁管理软件等使用串口的软件)打开占用,请退出占用该串口的软件,或者换另外一个串口,再次尝试。

6.2 与模块无法通信

如果能打开串口,但与模块通信失败,则请逐一检查确认以下各项:

- 1) 软件上所选的串口是否为主机连接模块的串口,如果使用 USB—UART 转换器,请在系统设备管理器中的"端口 (COM 和 LPT)"项中查看所虚拟出来的串口号;
- 2) 主机和模块之间的通信数据线是否接触良好; 串口的 TXD 和 RXD 数据线是 否连接正确,是否调反; 主机的 GND 和模块的 GND 是否连接在一块。如果连线正确, 是否将 TXD 和 RXD 线接反,请将其对调再次尝试;
 - 3) 通信参数设置是否正确,正确的串口通信参数应为默认波特率 115200;
 - 4) 发送的数据是否有错误,特别需要注意校验和是否有误;
 - 5) 检查是否为 16 进制发送接收(勾选 Hex)。

6.3 读取不到卡片

如果主机能读取到模块返回的信息(表明主机和模块通信已正常),但读取不到卡片的序列号,那么请检查是否是以下情况造成的:

- 1) 卡片距读卡天线是否过远, 试把卡片靠近天线再读取;
- 2) 卡片或模块天线周围是否有大面积金属,大面积金属会严重影响读卡,请把模块移到没有金属的环境再读取;
- 3) 卡片协议是否为模块所支持的协议类型; 卡片是否为 ID 卡等,由于 ID 卡工作频率和原理相差甚大,本模块不能支持此类卡片。

7 技术支持

德科物联作为专业从事非接触式智能卡读写技术及相关应用的解决方案供应商和产品 制作商,始终以为客户提供最及时、最全面的服务为宗旨。

如需您在研发的过程当中遇到技术方面的问题需要我们协助的,请随时联系我司,联系方式如下:

深圳市德科物联技术有限公司

www.derkiot.com

email: weiting@derkiot.com 技术支持 QQ: 460403381